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A numerical method has been developed for direct simulation of bubble dynamics
with large liquid-to-vapor density ratio and phase change. The numerical techniques
are based on a fixed-grid, finite volume method capable of treating the interface as
a sharp discontinuity. The unsteady, axisymmetric Navier—Stokes equations and en-
ergy equation in both liquid and vapor phases are computed. The mass, momentum,
and energy conditions are explicitly matched at the phase boundary to determine
the interface shape and movement. The cubic B-spline is used in conjunction with
a fairing algorithm to yield smooth and accurate information of curvatures. Nondi-
mensional parameters including Reynolds, Weber, and Jakob numbers are varied
to offer insight into the physical and numerical characteristics of the bubble dy-
namics. Based on the present sharp interface approach, bubble dynamics for den-
sity ratio of 1600 or higher, with and without phase change, can be successfully
computed. (© 2001 Elsevier Science

Key Words:direct numerical simulation; fixed grid; sharp interface; bubble dy-
namics; phase change.

1. INTRODUCTION

Liquid—vapor phase change phenomena abound in daily life and in the power, chemi
petroleum, and electronics industries. The central mechanism of heat transfer during nt
ate boiling is the so-called ebullition cycle: a complete process of liquid heating, nucleati
bubble growth, and departure [10]. Hence understanding and prediction of vapor but
behavior is of substantial interest in the research community. The interaction between
dispersed phase (bubbles) and the continuous phase (liquid) involves exchanges of mo
tum, thermal energy, and mass. The interactions are two-way coupled, which means
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the bubble behavior is affected by the liquid flow and the liquid flow is also modulate
by the presence of the bubbles. These two-way coupled interactions include stress bal
via the Young—Laplace equation [65], energy exchange due to heat transfer, as well as |
heat release and mass transfer during phase change.

In spite of the substantial efforts made in the past several decades [6, 12, 16, 20, 23, 2¢
40, 43, 45, 49-51, 57-59, 63, 67, 71, 76], a fundamental understanding of bubble dynar
with phase change is far from complete. A major reason for this unsatisfactory state
knowledge the lack of adequate tools to facilitate detailed investigation of the underlyi
physics. From a computational point of view, as reviewed in [66], development of numeri
techniques for simulating flows with dynamic, moving interfaces is a challenging task.
addition to the well-known fact that with moving boundaries, the shape and movement
the interface, and hence the geometric configuration of each phase, needs to be com
as part of the solution, the large property jumps often associated with phase change
substantial additional burden to the computational task.

For a single bubble rising in a liquid, previous theoretical results are largely limited
very small deformation at either low or high Reynolds numbers. For example, at very |
Reynolds numbers, there exists the theoretical model by Taylor and Acrivos [70] ba:
on the asymptotic theory. At high Reynolds numbers, only boundary-layer approximatic
[27, 44] and semi-empirical models [47] are available. All of the above assume that
bubble maintains a spherical shape, which is rather unrealistic at high Reynolds or \
ber numbers. Ryskin and Leal [58] have reported the first successful theoretical solu
for motion of bubbles with a finite degree of deformation using body-fitted, moving gri
techniques. In their model, the interface is treated as having zero thickness; the sha,
explicitly determined by the stress balance at the interface. However, the problems t
considered involve one viscous fluid surrounding the bubble and a void bubblgwtlD
andu, = 0. There is no flow field inside the bubble. So the interfacial conditions involv
forces on only one side of the bubble interface. Later, Dandy and Leal [12] extended
numerical method of [58] to consider the deformable drop problems involving two visco
fluids both inside and outside of the drop. In both [58] and [12], only steady-state proble
are considered. Furthermore, orthogonal, body-fitted coordinates are adopted to genera
moving grid system. For cases involving phase change and substantial volumetric che
between phases, the moving grid method can encounter difficulties. Alternatively, fixed ¢
techniques [8, 29, 46, 48] can be devised. In recent years, many numerical simulations o
bubble motion that have been reported in the literature are based on such approaches.
ever, in many cases, the interface is not sharply defined, and the stress balance is enf
across several computational cells, instead of at precisely defined locations. Example:
clude the immersed boundary method, the level-set method, the phase field method, an
volume of fluid method [3, 4, 7, 8, 25, 29, 31-33, 38, 39, 46, 48, 56, 62, 64, 68, 69, 72, 7

For a large density ratio, the disparity of the fluid property across the interface mal
the computation stiff and often leads to numerical instabilities. Our opinion is that it is d
sirable to develop sharp-interface computational capabilities for problems involving lat
property jumps, such as density and viscosity, and geometry-dependent characteristics,
as curvature-related interfacial dynamics, for accuracy and stability enhancement. For
sharp-interface approach, Udaykunedral. [73] have presented a method for simulating
capillarity/conduction-controlled solidification dynamics (i.e., with no convection) base
on a finite difference discretization. Based on a different approach, to overcome certain
ficulties, such as spurious pressure oscillations at the interface, experienced by the leve
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method, and to sharpen the interface representation, Fedkiw and co-workers have devel
the Ghost Fluid method for tracking the moving interface of discontinuity [18, 19, 35, 4~
They used so-called ghost cells in conjunction with an isobaric fix technique to keep
density profiles from being smeared out.

Property jumps and discontinuities are also encountered in many other physical proble
such as combustion. Qiat al.[52] and Helenbroolet al.[28] have developed techniques
to track the moving interface due to premixed flames. Helenbetb@l. [28] indicate that
their method does not introduce artificial smoothing of the changes in fluid properties act
the surface of discontinuity. A main limitation of their approach is that the jump conditic
cannot be a function of the spatial derivatives of the flow variables at the discontinuity. T
approach of Qiaet al.[52], on the other hand, is based on the smeared interface treatme

For the liquid—vapor phase change problem considered here, the momentum effectis
dominant. The exact interface location is subject to the combined momentum balance f
both liquid and vapor phases as well as surface tension. While there have been succe
attempts reported in the literature to simulate multiphase dynamics involving liquid—vay
and phase change [e.g., 32, 67, 76], the need for alternative methods for solving ¢
problems continues to exist. Juric and Tryggvason [32] and Welch and Wilson [76] he
simulated cases with large density jumps between phases, while Son and Dhir [67] |
focused on near critical conditions where the density variations are modest. In term:
the numerical techniques, Juric and Tryggvason [32] have adopted the immersed boun
method, Son and Dhir [67] have employed the level-set method with modification to
commodate the axisymmetric horizontal film boiling and spherical bubbles, and Welch ¢
Wilson [76] have modified the volume of fluid method to track the advection of the inte
face with a conservation equation. All three resulted in the interface definition smeared c
more than one computational cell. With the above review, it seems that no sharp-inter
method for treating phase change problems with large property jumps has been report
the literature.

In the present effort, we detail a fixed-grid, sharp-interface method based on a fit
volume discretization with cut cells, previously presented ieté.[78] for cases involving
one fluid, arbitrary geometries but no moving boundaries, by advancing the capability
solving two-fluid problems with phase change, surface tension, buoyancy, convection
viscous effects. The cut-cell approach using the Cartesian grid method has been devel
by numerous researchers [2, 14, 21, 53]. Recent progress in this area has been report
LeVeque and Li [41] and Calhoun and LeVeque [9] for single PDEs, and by Forrer a
Jeltsch [22] for inviscid compressible flows. In the present cut-cell approach, by combin
the smaller fragment of a cut cell with a neighboring regular Cartesian cell, for a unifol
underlying grid, the ratio of the dimension of all cells is always less than 3. The small
cell is half the size of the regular Cartesian cell, whereas the largest cell is a combinatio
aregular cell and a half regular cell which is at most 1.5 times the size of a regular cell (
Ye et al.[78] for details). This approach can enhance computational accuracy and stabi

Our goal is to develop a technique for calculating the shape and curvature of the liqu
vapor interface accurately over wide ranges of Reynolds, Weber, and Jakob numbers
density ratio. The present finite volume method ensures mass conservation in both ph
The merit of the present approach is its capability of resolving sharp interfaces, mass cor
vation, large property ratios, and phase change, along with convective—viscous—interf
transport. Our primary interest in this work is on bubble dynamics. In comparison, ma
of the above referenced works focus primarily on film boiling.



784 YE, SHYY, AND CHUNG

In the following, we first present the mathematical framework, based on continut
mechanics, for multiphase dynamics involving phase change, and we introduce the
dimensionless parameters. The interface tracking strategy and the detailed informatior
computing curvatures along several test cases are presented. The procedures for obtsz
the exact, instantaneous interface location and enforcing mass conservation in the v
phase are then presented. Selected physical examples including those studied by Ryski
Leal [58] for nonevaporating flows, and cases with phase change, are discussed. Inform:
such as effects of density ratio and grid resolution on convergence and accuracy, respect
are also presented. Descriptions of the curvature computation and coupled computati
procedures are given along with numerous case studies to illustrate the performanc
the present approach. Together with the demonstration of the moving boundary solutior
Udaykumaeet al.[73], and fixed boundary, fluid flow solutions in ¥¢al.[78], performance
of the various aspects of the present Cartesian-grid, sharp interface technique is asse:

In this work, we have not considered merger and breakup cases. Typically, the cr
rion adopted for such scenarios is based on numerical resolution; for example, when
interfaces coexist in the same computational cell, then merger is declared. While ther
no fundamental difficulty numerically in handling such, situations, it is desirable to devi
physical models based on first principles to guide the numerical procedures. Such a m
will likely require information beyond the continuum level.

2. MATHEMATICAL MODEL

The schematic of the computational model for a vapor bubble rising in a quiescent liq
with phase change is illustrated in Fig. 1. The motion of the vapor bubble is simulated i
cylindrical domain filled with liquid of the same substance. The major simplification he
is that the system is assumed to be axisymmetric.

The two-fluid model is adopted as the mathematical basis which governs the liquid—va
two-phase flow of a single translating vapor bubble; i.e., a separate set of mass, momen
and energy conservation equations are solved for each phase (dispersed vapor phas
continuous liquid phase surrounding the bubble) while sharp discontinuities of matel
properties are maintained across the interface of zero thickness.

The mathematical model adopted in this paper is based on the following characteriza
of the problem:

e axisymmetry,
e single component system,
e Newtonian, constant property fluids in each phase.

The dimensionless governing equations and boundary, interfacial conditions in the lig
and vapor phases can be written as follows [e.g., 15, 30, 36, 59]:

Liquid Phase
V.u=0, (1)
ou 1
= . - _V il v
it + V- (uu) p+ ReV u, (2)
oT 1
— 4+ V.@uT) = =VT. (3)

ot Pe
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FIG.1. Schematic of the computational model and corresponding computational domain. For cases invol

stationary bubblesl./R = 80 andH /R = 40; for rising bubble cases without phase charigéR = 20 and
H/R = 6; for rising bubble cases with phase changgR = 20 andH/R = 8.

Vapor Phase

V.u= 4)
Q@i
()G vem] = () (& )rer ®

Here the subscriptsandv designate the liquid and vapor phase respectively;velocity;
p is pressureT is temperaturet is time; p is density;u is dynamic viscosityk is thermal
conductivity;cp, is heat capacity.

Interfacial Condition

For the mass continuity condition, we have

(Un) — (%)(Un)v
(Un)int = 1_ (&) s (7)
o
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where the subscript denotes the normal component aind denotes a variable at the
interface. Therefordu,)int means the interface velocity in the normal direction of the loca
interface segment.

For the momentum balance condition (the Young-Laplace equation), we have

1 _ 1 8un My 3Un .
p—py+ WEK = Re{(tm), - (MI) (%)j — [Un)i = Wn)int] (Un)
+ <I:}> [(Un)y — (Un)int] (Un)w, (8)

wherep = pg + 1/Fr - g(zout — 2), with Fr = u?/gL the total pressure including hydro-
static and dynamics pressumg,; is the level of the liquid pool, and is the curvature of
the interfacial curve.

For the energy conservation condition, we have

J oT, Kk, oT,
(Un)int_(un)u:PZ'[anl_(kl><an>:|- 9

For the interface temperature condition, the thermal equilibrium condition is applied
the interface for the temperatures,

T =T, = T (10)

whereTi, is the temperature at the phase change interface. A condition on the interf:
temperature must be specified to complete the formulation. Juric and Tryggvason [32] |
sented a sophisticated interface temperature expression. In this study, a sufficiently acc
formulation for the interface temperature, taking into account the Gibbs—Thomson eff
owing to the curved interface, is used as

Tint = Tsat<1 + ﬁ) s (11)
oA
where Tgy is the saturation temperature of the two-phase mixture at the correspond
ambient pressure,,, o is the surface tension coefficient,is the curvature, and is the
latent heat of evaporation.
The dimensionless form is written as

Tine =Tk (12)
with
T
— =9 (13)
AT p|)u|_

The major dimensionless parameters are

urL
Re:PI r

i
Ur2
Fr — F
= gL ( roude nu ||be[)

(Reynolds number)
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Pe= p'c’l’;‘iurl' (Peclet number)
= Re-Pr
Pr= ﬂ, V= &, o = L (Prandtl number)
o ol PI1Cp
We= ’O'ii (Weber number)
Ja= % GAT (Jakob number)
v

The reference scales are lengttinitial bubble diameter, velocity,, and timet, = L/u,.
The characteristic temperature scalaib = Ty, — T, = Ty, — Tsat. The velocity scale can
be defined based on the diffusion mechanismiL, buoyancy effect(gL)/2, or a bubble
terminal velocity. The choice in each case will be specified individuallis the surface
tension coefficienfT,, and T are, respectively, imposed liquid temperature and saturatic
temperatureg is the acceleration gravity. is the latent heat of evaporation.

3. NUMERICAL METHOD

In the present approach, we employ a combined Eulerian—Lagrangian strategy.
fixed Cartesian grid is used as the Eulerian framework of the algorithm to facilitate t
field equation computation. Within this framework, separate marker points, connectec
piecewise polynomials, are adopted to represent the interface to form the Lagrangian
tion of the method. The interface can be either fixed solid boundaries with irregular sha
[78] or moving phase boundaries [73]. With moving boundaries, the motion of the inte
face is tracked through the translation of the marker points over the stationary, Carte:
grid. In each phase, a finite volume, fractional step method [11, 37, 79] is employec
solve the coupled governing equations of momentum, energy, and mass transfer. A cut
approach is developed in [78] to handle arbitrary intersections between an interface
the grid line. In the interface region, the grid will be recombined to form non-Cartesi
cells. Consistent interpolation formulas are chosen for estimation of the fluxes along:
of the cell surfaces. Both inviscid and viscous terms can be handled to maintain a glob
second-order-accurate algorithm. Here, this approach is further extended to treat liq
vapor interaction. The numerical method is thoroughly described in [77]. Consequently,
key elements of the present approach are summarized in the following.

3.1. Interface Representation UsingCubic B-Spline

A representative schematic of the present fixed grid method is depicted in Fig. 2. The (
is Cartesian and does not conform to the body surface, and the interface is explicitly defi
by geometric curves in the computational domain. Basic elements involved in defining
interface are marker points and curves connecting the markers. The markers define
terminal points of the interfacial curves. Given a set of markers, finding a curve whi
fits all markers is a geometric interpolation process. Depending on geometric conditi
imposed at the marker points, there are various ways to define numerically the interf
characteristics. For example, one can define a piecewise circular arc or piecewise pare
for three consecutive markers [65, 66, 74].



788 YE, SHYY, AND CHUNG

Lifuid

Vapor

.o/ﬂ\

X

Marker points

FIG. 2. Schematic of Cartesian grid and interfacial marker points.

In the present work, th€? cubic B-spline curve is employed to fit a set of marker points
The B-spline curve refers to a set oéBér curves glued together at the marker points tc
represent the interface. As discussed in details by Farin [17], there are efficient algorit!
to do curve manipulation and geometric calculati@isdenotes the smoothness conditions
at the junction points of piecewiseeBier curves, requiring that a composite curvetimes
continuously differentiable at the junction poir®s.thereby means that the composite curve
has continuous second derivatives at any marker point. To achieve this level of smoothr
the individual BSzier curve must be atleast a degree 3 (cubic) polynomial to have continuc
second derivatives, and second derivatives computed from both sides of the junction p
have to be equal. This mathematical requirement of the two polynomials yields a smo
global curve to represent the entire interface.

Once the B-spline fitting curve of the interface is constructed, the geometric informati
such as location and curvature of any point along the entire interface can be easily obtai
The translating, deforming, expanding, or shrinking of the interfaces is realized through
motion of each individual marker point, which in turn is determined from the flow quantitie
onthe underlying fixed grid, using, e.g., normal stress balance condition. With the movem
of the markers, the instantaneous B-spline representation of the interface is reconstru
accordingly to keep track of the interface. For an interface in motion, the curvature calcula
based on the continuously constructed B-spline may exhibit numerical oscillations [17].
extract the correct curvature values along the interface, a fairing algorithm [17] is adopt
The combination of the cubic B-spline and the fairing algorithm results in a robust a
accurate method for tracking highly distorted interfaces in terms of location as well
curvature.

The interface representation using the B-spline is based on the marker locations comp
ateverytime instant. The interfacial marker points are indexed sequentially and can repre
any number of open or closed interfaces based on the assigned connectivity between t
The locations of the marker points are defined by coordin&tsls which is parameterized
in terms of arc lengtls and a distance ratio based on the grid spacing. In our investigatio
the marker spacing is initially assigned to be the same as the grid spadimthe course of
computation, markers are redistributed after each time step according to the initial criter
For the problems considered here, the two phases are designated as phase 0 and pt
The convention adopted by the present algorithm in indexing the marker points is that



BUBBLE DYNAMICS METHOD 789

Phase 0

s=

Phase 1

FIG. 3. lllustration of immersed interfaces, marker points, and normal convention.

choosing the normal of the interface to point from phase 1 to phase 0, phase 1 always li
the right as one traverses the interface along the sequence of the marker points, as illust
in Fig. 3.

In the following, we describe the construction©f cubic B-spline curves and the so-
called fairing algorithm which is used to remove numerical noise to recover the accur
information of the curvature of the interface. Based on spline theory [1, 17], to constr
aC? cubic B-spline curve interpolating a set of data pois. . ., X, with corresponding
parameter values (or knotsy, ... u, the vertices); of the B-spline control polygon have
to be determined first, as shown in Fig. 4. In this example, five prints . , Xs are assigned
initially. The corresponding knot sequengg . . ., Us is chosen as the chord length at each
point. The example here illustrates a closed curvessse Xo. The relationship between
the data pointg; and the control verticed, is [see 17]

(Ai—1+ A Xi = odi—y + Bidi + yidiqa, (14)

FIG. 4. Cubic interpolatory spline curve of five points along with its B-spline control polygon axieB”
control polygon.
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where we have\j = Au; = uj;1 — U; and

o = (A)?
T A+ AL+ A
g = Ai (A2 + Aj—1) n Ai_1(Aj + Ajt) ’ (15)
Ao+ A1+ A Aii+ A+ A
(Ai_1)?
Vl =

A1+ A+ Aiyr

Using the periodic condition, we obtain a linear system of the form

Bo Yo %) do ro
ar B on th r
: = (16)
a2 P2 vi-2| |d r.—2
Y1 ar-1 Bl | di_g -1

where the right-hand sides are of the form
r = (Aji_1+ A Xi.

Equation (16) can be solved using the procedure described in, e.g., Aletbakd1],
yielding the verticesl, . .., ds as shown in Fig. 4.

Then the vertices of the control polygon for piecewise cula@ziBf curves can be obtained
with this B-spline control polygon. Based on this procedure, the two vertices on each leg
the B-spline control polygon can be determined. As shown in Fig. 4, each of the piecew
Bézier curves is defined by four control vertices, including the two marker points, denof
by solid circles, and, between them, two vertices to be decided from the B-spline con
polygon. Therefore all four &ier curve control vertices are

bs = Xi,
Aj_1 4+ Aj Aj_
bsi_» = IlA Yo g+ IAzdi, (17)
Aj Ai_ Aj_
by 1= —d_1 2t A L,

whereA = Aj_, + Aj_1 + Aj. The indexi denotes théth vertex of the B-spline control
polygon, and the total number oEBier control vertices isi3corresponding to vertexof
the B-spline control polygon for a closed curve.

Once we have identified the control vertices for each lo#i& curve, we can then
define a local parameter€t < 1 for the interval {i, uj 1] ast = (U — uj)/(Uj+1 — U;),
to express the piecewise cubieBér curve in the form

3
bt) = > bB), (18)

i=0

where Bernstein polynomid3(t) is defined by

BO(t) = (B)tiu—tfi (19)
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i) lo otherwise.

Using Eq. (18), geometric information such as normal and curvature can be evalue
using analytical formulas as

with binomial coefficient

S S
)
Xt
ny=—"+ 20
T e +) 0
_ Xit Yt — Yt Xt
(x2+y2)%*

For axisymmetric geometries, the total curvature is the summEq. (20) and the other
principle curvature, i.ex,/y(xZ + y2)%2.

3.2. Fairing Algorithm

Although curves look apparently smooth, using B-spline fitting, the curvatures obtair
by Eq. (20) can be contaminated by numerical noises. The curvature formula involves
second derivatives as well as nonlinear products of the first derivatives and is pron
suffer from numerical noise. As an example, Fig. 5 shows an interface curve taken fro
simulation conducted in this study. The corresponding curvature plot based on the B-sf
is shown in Fig. 6. There are substantial oscillations in the curvature profile, indicating t
noise associated with the numerical procedures are substantial. Such phenomena ar
known in computer-aided geometric design [17]. To treat this difficulty, so-called cur
fairing (smoothing) algorithms have been developed in the literature [17, 61].

FIG.5. A sample interfacial curve from one simulation case.
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FIG. 6. Curvature plot obtained from B-spline fitting for the interfacial curve in Fig. 5.

One such algorithm, in th€? cubic spline case, makes the local spline curve segmel
three times differentiable, which is one order higher than that required by the original cu
spline. The basic idea is to adjust the vertex locations to make the local curve segmi
around them become three times differentiable. Since the curvature involves only first
second derivatives, this extra differentiable requirement will ensure that the curvature
differentiable, and it prevents discontinuity in the slope of the curvature, as shown in Fig

The formula for obtaining the new B-spline control vert&xis

_ (Uj+2—Uj)|j + U —Uj_2)Tj

d; (21)
] ’
Uj+2 — Uj-2
where the auxiliary pointl andr; are given by
I = (Uj+1 —Uj—3)dj—1 — (Uj41 — Updj
uj —uj_ ’
i -3
(22)
fo_ (Uj43 —Uj_1)djy1 — (Uj —Uj_1)dj42
] _— .
Uj+3 — Uj
10 curvature before fairing
o curvature after fairing
8 F
o
4k
£ 2f
“a E
5 OF
5 Lt
o T
-4 ;_
-6 F
8 _
-10:""1""""'
0 40 80 120 160

Marker Point

FIG. 7. Curvature plot obtained before and after fairing operation for the curve in Fig. 5.
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The geometric interpretation and detailed discussions can be found in [17, 61].

In practice, typically one fairing operation is not sufficient, and the fairing procedure w
be repeated multiple times. For the curve in Fig. 5, the resulting curvature plot after ]
iterations of fairing operation is shown in Fig. 7.

Itis noted that the fairing algorithm is a geometric operation. It obtains correct curvatul
by removing the numerical errors in constructing the interfacial geometry, not by maniy
lating the formulas for computing the curvature of a given geometry. In the latter case,
can resort to an averaging procedure [65] or the removal of high wave number compon
using FFTs [73]. On the other hand, attention needs to be paid to ensure that the interf:
marker locations, as well as the volume/surface enclosed by the interface, are satisfact
preserved. A critical criterion of developing a satisfactory fairing algorithm is that wit
arbitrary number of fairing iterations, the geometric information can be maintained at
asymptotically constant state without being continuously smeared. For the case show
Figs. 57, the interface shape and curvatures settle down, as depicted in Fig. 7, witl
further evolution.

To further validate the computational techniques adopted for geometric representat
we examine the expansion of a circle on a 6262 grid as shown in Fig. 8. Initially,

0.6

05 |

Curvature

03 |

0.2

0.1 1 1 L 1 L
0 100 200 300 400 500

Marker Point

FIG.8. (a)Shapes of expanding circle at equal intervals of time. (b) Corresponding curvatures along the ct
at the same time instants as in (a).



794 YE, SHYY, AND CHUNG

the circle has a radius of 1, and it expands at a constant speed. The curvature of the c
at any given time is a constant. Figure 8a shows the interfacial shapes at equal inter
of time. Figure 8b shows the curvature computed by the aforementioned formulas, at
corresponding time instants as in Fig. 8a. As shown there, the interfacial curvature |
constant while, by regulating the spacing between two neighboring markers, the numbe
markers increases as the circle expands. The results shown in Fig. 8 are obtained fror
B-spline fitting algorithm only. No fairing operation is needed for this case; by applyir
fairing, no impact is observed, either.

As another example for variable curvatures, Fig. 9a shows an initial interfacial curve sh;
expressed in the form ofi = 2.0+ (1 — cog2x X;/10)). The curvature plot is found to
be smooth using a B-spline fitting for the initial shape, as shown in Fig. 9b. Given tl
normal velocity of each marker point &; = Y; — Y1, the interface moves as depicted in
Fig. 10a. If the fairing is not applied, the curvature obtained from B-spline representati
in Fig. 10b, exhibits oscillations near both ends of the curve after the interface evolves i
a new shape. After 10 fairing operations, the shape and curvatures at the final time ins
are shown in Fig. 11. The curvature profile in Fig. 11b is free from the artificial spikes

0 2 4 6 8 10
X
b 2r
15 F
1F
® sk
= F
""u' [
> OF
5 i
O -0.5:-
aF
45 F
_2: 1 1 1
0 70 140 210

Marker Point

FIG. 9. (a) The initial shape of two fingers. (b) The corresponding curvature of two fingers using B-splir
fitting.
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L
0 80 160 240 320 400 480
Marker Point

FIG. 10. (a) The shape evolution of two fingers until the later stage of the development when fairing is 1
applied. (b) The curvature corresponding to the final shape denoted by the solid line in (a).

the ends. Furthermore, with a periodic curve, the curvature should be periodic as well.
shown in Fig. 9b, initially, the computed curvature is periodic; however, without fairing
Fig. 10b shows that the computed curvature for a moved interface is no longer perio
After fairing, as shown in Fig. 11b, the periodicity is restored again.

The shape preservation of the fairing algorithm is confirmed by Fig. 12, which sho
the corrections on coordinates of markers by the fairing operation at various time inste
from the beginning to the end of the development of the interface. All corrections of ¢
ordinates are small, which is the reason why the two shapes before and after the fal
operations are virtually identical to each other. The number of marker points increases
result of a reorganizing process to follow the increasing arc length caused by the inter!
movement.

3.3. Cartesian Grid Method for Sharp Interfaces

In the following, we summarize the key elements to treat the interplay between
Cartesian grid and the interface.
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FIG.11. (a)The shape evolution of two fingers until the later stage of the development when fairing is applit
(b) The curvature corresponding to the final shape denoted by the solid line in (a).

As already mentioned, the interfacial marker points are indexed sequentially &
distributed onto multiple interfaces as shown in Fig. 3. Tecubic B-spline curve is
employed to represent the interfaces based on the marker points.

Once the interface is defined, one needs to identify in which phase each computatic
cell lies so that correct transport properties can be assigned. Furthermore, for any
neighboring cells between which a interface passes through, there may be a discontir
in transport properties such as density and viscosity. Those boundary cells are reshap
maintain flux conservation around the interface. A major goal of the present approach i
adopt a finite volume formulation for all computational cells so that mass, momentum, ¢
energy conservation is honored in all resolvable scales, including the computational ¢
intersecting with phase boundaries. Once a cell intersects an interface, it is split into
parts; with the partial cell containing the center of the original Cartesian cell maintaining t
initial cell index, and the other merged into a neighboring cell belonging to the same phe
As illustrated in Fig. 13, this procedure results in irregular, trapezoidal shaped cells arot
the interfaces. Away from the interfaces, computational cells are structured and Cartes
In such an algorithm, while a nominal structured grid index system is maintained, the f
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FIG. 12. (a) The corrections of the interface location by fairing algorithm at time instants corresponding

shapes shown in Fig. 11a. (b) The corrections of the interface location by fairing algorithm at the same mar
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FIG. 13. lllustration of the resulting situation when the cut-cell approach is applied; i.e., fragments of ce
which are cut by the interface are absorbed into neighboring cells. The newly formed cells are shown by da
lines on both sides of the interface.
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calculation across the surface is conducted based on interpolation of varying degree
polynomials. The resulting flow solver needs to account for both Cartesian and trapez
cells, using a fractional step method. The details of all assembly and flux computat
procedures are described in &eal.[78] and will not be repeated here.

The translating, deforming, expanding, or shrinking of the interfaces is realized throu
the motion of each individual marker point, which in turn is determined from, e.g., norm
stress balance condition if no phase change s involved. Such a procedure has been previ
reported; see, e.g., Ryskin and Leal [58] and Rao and Shyy [55]. In both approaches, ab
fitted coordinate system is adopted to facilitate a more straightforward delineation of
interface location. In [58], a stream-function—vorticity formulation is adopted in orthogon
coordinates, in which the pressure needs to be processed after the flow field is compt
In [55], the velocity, pressure, and temperature fields are computed with no requiremen
orthogonal coordinates, while the dynamic Young-Laplace equation is integrated over
finite domain in a manner analogous to the discretization of the transport equations c
the finite volume. In the present work, the method described in [58] is implemented in 1
context of the fixed Cartesian grid method where the pressure field is computed. In esse
this approach takes the local imbalance between the total normal stredsich includes
both static and dynamic pressure, viscous contributions, and capillary forces,

1
I(s) = th — —«, 23
(s) Tn WeK ( )
to drive the movement of the interface, via the individual markers, in the normal directic
The magnitude of the local displacement is proportiondlts). Thus

X P = xR gTIR(S) - g, (24)

n+1,k+1 n+1,k k
Yint = VYint + BIT*(s) - Ny,

whereg is an underrelaxation factor, to be determined by numerical experiment; its typit
values aréD (10~ to 10°2) in our computations.

In cases where an interface completely encloses one of the two fluids, e.g., a bubb
our study, the local increment in the location of interface marker points must be done
such a way to satisfy the global mass conservation constraint; i.e., the bubble volum
preserved if density is fixed. Various procedures to enforce global mass conservation t
been reported in [55, 58, 72]. The procedure employed in the present context, simila
that in Ryskin and Leal [58], is summarized as follows.

We know that in two dimensions, the change in the area betweékihitend(k + 1)th
iterations is

S
2 211/2
TR =2 4 (4 =y s (25)
where the integral is taken along the interface. Since
Jk k2 Jk ky211/2
[t ™ =X ™)+ (v =y ) ~ ) (26)

we have the mass constraint

/snk(s) ds=0. (27)

0
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This constraint determines a free constant of the pressure field in the total normat,stre:
at each iteratiofk so that Eq. (27) is satisfied.

Even after this constraint has been satisfied, the bubble may still change volume slig
at each iteration due to higher order numerical errors. The error in the relative cha
in bubble volume is typicallyO(10~3). To prevent these small errors from accumulating
and becoming significant after a number of iterations, a simple scaling of the interf
as employed by Ryskin and Leal [58] is done following Eq. (24) to conserve the volur
down to the level ofAV/V < 1077, One should note that the volume correction is alsc
incorporated into the computational loop of the field equations and the interfacial conditio
Consequently, the solution is obtained with the mass, momentum, and energy trar
between phases conserved. The uniform scaling magnitudithe interface location in
the normal direction can be determined from

S
/ Al .ds= AV, (28)
0

whereAV is the error in the volume. This simple scaling is very effective: normally one ¢
two iterations of this process is sufficient to bring the percentage error in the volume dc
to 107°%.

The global iterative process to update the interface location using normal stress bal
within each time step is therefore as follows.

(1) For a given shape of the bubble, the flow field is computed by solving the Navie
Stokes equations with a small number of iterations on the Poisson pressure equation.

(2) Knowing the flow field, the normal stress balance at the interface is checked. |
is not satisfied, the interface shape is modified according to Eq. (24) so as to reduce
imbalance between the stresses.

(3) After each interface update, mass conservation is enforced by rescaling the inter
using Eq. (28).

(4) The interface normal velocity is calculated from the kinematic condition

1 1
Uit = (Xint - — Xfhe) /AL

(5) Return to step 1 and repeat until all equations and boundary conditions are satis
to a predetermined level of accuracy.

3.4. Determining Interface Shape with Phase Change

The interface movement due to normal stresses and surface tension is computed acco
to the procedures outlined in the previous section, and that due to mass transfer assoc
with phase change is computed according to the energy balance discussed below. Tog:
these two components offer a complete procedure to update the interface movement
shape.

The interface velocity component owing to phase change in the normal direction is gi\
in Eq. (9), i.e.,

Ja [aT, k oT,
n+1: n+1 n+1=_. L v
(un)mt_p (Un)|m (Un)v Pe |:an (k| ) ( an >:| ) (29)
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where the superscript+ 1 on the left-hand side denotes time+ 1)th time step while the
right-hand side uses the field values at time stejfphe subscripp on the left-hand side
means that this is the interface velocity component due to the phase change effect. S
interface movement in the normal directidriven bythe phase change is

n+1

_yn
int,p'n_x'

X me N+ (Ui - n) At (30)

After we have arrived at the new location of the interface, we can use the process descr
in the previous section to further determine the shape satisfying the momentum balance
dition. The final interface velocity at time stapt 1 obtained from the kinematic condition
is the combination of the components owing to phase change and momentum bala
Hence, the vapor phase velocity at the interface in the normal direction is given by

U = U — UG (31)

which is the boundary condition for solving the flow field in the vapor bubble.

The liquid phase velocity at the interface in the normal direction, according to Eq. (7),

wwﬁ1=w0ﬁ{1—(“)]+(“>waE (32)
Pl 14|

which is the boundary condition for the liquid phase.

4. RESULTS AND DISCUSSION

Referring to Fig. 1, unless otherwise mentioned, all the cases reported above are comf
with a 250x 75 uniform mesh. The initial and boundary conditions for the cases present
below are as follows: At the three far sides of the boundary, the outflow (zero gradic
of velocity) is specified for the velocity and the temperature is set to the isothermal va
of 1. At the line of symmetry, the mirror condition for all variables is used. Owing to th
low underrelaxation parametgrin Eq. (24) used to update the interface shape at eac
inner iteration within every time step, a fairly large number of interface updating iteratior
typically 50, are required at each time step.

The solution procedure for the Navier—Stokes equations using a fractional step met
is briefly described as follows. First an advection—diffusion step is carried out where 1
momentum equations without pressure gradient terms are solved to obtain an interme
velocity field. The advection—diffusion step is followed by the pressure-correction step
obtain the final velocity field at the new time step. The constraint that the final veloci
field must satisfy the mass conservation condition leads to a Poission equation for pres:
which is solved in between the advection—diffusion and pressure-correction steps.
residual computed in each cell, from the finite volume formulation, is divided by the ar
of that cell. The largest value among all cells is then selected as the indicator. The crit
for determining the convergence are that the error indicator must be less thfufot0
momentum equations at the advection—diffusion step? f6r the Poisson equation for
pressure, 1 for the energy equation in phase change cases, antf@0evaluating the
normal stress balance at the interface. When these convergence criteria are satisfiec
error indicator of mass conservation for the entire flow field is less thaf 10

A grid dependency test will be presented later along with the results and discussion.
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4.1. Buoyancy-Driven Bubble Motion

To help assess the performance of the present method, we first make a direct compa
with the results reported by Ryskin and Leal [58] for the bubble motion at different Reynol
and Weber numbers. It is noted that the results of [58] agree well with the experimer
studies of Saffman [60] and Bhaga and Weber [5]. The steady state is considered in t
studies by requiring that the buoyancy force be balanced by the hydrodynamic drag.
compute the solutions fdRein the range of 1< Re< 100 and folWefrom 0 up to 20 for
Re < 20 and up to 10 foRe> 50. All computations are performed in a time-dependen
manner.

To facilitate direct comparison, the condition of balance between the drag force ¢
buoyancy force used in [58] is employed in the present study to determine the Fro
number in the pressure term of Eq. (8). The relation used by [58] is

%J = %CD, (33)
whereR is the bubble radiug) is the terminal velocity of the bubble, a@} is the drag
coefficient.

The left-hand side of Eq. (33) is actuallyMr. For each case, we use Eq. (33) to find the
Froude number from a give@p value. This procedure ensures that the scaling process
between the current and that used in [58] are consistent. Of course, the drag coefficient
computed from the solution obtained. The drag coefficients obtained in the present st
given in Table I, are those when the bubble reaches a constant rising velocity.

The effect of grid resolution on the solution accuracy is examined first. Unless otherw
mentioned, all simulations reported in this work employ the same grid resolution around
interface; that is, the number of cells across the initial bubble diameter is 25. To asses:
grid dependency of the solution, we have conducted computations for oné&easd:00,
We= 4, andp,/p = 0.001, using (i) a 256 75 grid with 25 cells across the initial bubble
diameter and (ii) a 508 150 grid with 50 cells across the initial bubble diameter. Figure 1
shows the time history of the aspect ratio of the bubble. The aspect ratio is defined as
length along the major axis divided by that along the minor axis. As can be seen in Fig.
the difference on the two grids is small.

The drag coefficients obtained by our simulations and by Ryskin and Leal [58] ¢
summarized in Table I. Also included in the table is the error estimate reported in [5
based on an energy dissipation analysis of their numerical simulation. This informat
helps one gain a sense of the accuracy level in that work.

Figure 15 compares the steady bubble shapes at three density ratios. The differe
observed are small. The reason for this phenomenon is that by fRaéagdWe the only
impact from the density ratio is via the unsteady and convection terms in the moment
equation in the vapor domain. For a rising bubble, since the fluid dynamics inside
bubble is induced by the interface movement, for the preReandWe(defined based on
the properties of the liquid phase), the impact from the vapor portion of fluid dynami
is limited. Accordingly, only minor differences are observed in Fig. 15. Nevertheless, it
reasonable to observe that, as the density ratio increases, the bubble becomes less deft
Figure 16 shows the bubble shapes at selected time instants for the three density re
These observations have been reported previously in other studies, including Dandy
Leal [12]. The drag coefficients for these three cases from our simulations are 1.29, 1
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TABLE |
Comparison of Drag Coefficients from Present Simulations (First Row) with Those Obtained
by Ryskin and Leal [58] (Second Row) Using Integration of the Forces at the Surface

We
Re 2 3 4 6 8 10 12 15 16 20
2 10.9 — 11.4 — 11.6 — 11.8 — 11.9 —
10.6 — 11.0 — 11.1 — 11.2 — 11.3 —
2% — 2% — 3% — 4% — 6% —
5 5.0 — 55 — — 6.1 — — — —
5.00 — 5.48 — — 5.99 — — — —
0.2% — 0.5% — — 4% — — — —
10 2.9 — 3.4 — 4.1 — 4.4 — — _
2.92 — 3.41 — 4.00 — 4.25 — — —
0% — 0.5% — 3% — 8% — — —
20 1.7 — 2.2 2.6 3.0 3.3 — 3.7 — 3.7
1.74 — 2.16 2.56 2.94 3.22 — 3.55 — 3.60
0.5% — 1% 2% 5% 10% — 5% — 4%
50 0.9 — 1.2 — 2.3 — — — — —
0.88 — 1.23 — 2.18 — — — — —
0.5% — 0% — 12% — — — — —
100 0.5 — 0.8 — — — — — — _
0.54 — 0.81 — — — — — — —
0.5% — 1% — — — — — — —

Note.The third row shows the relative deviation of drag coefficients computed via energy dissipation in Rys|
and Leal's computations. In Ryskin and Leal’s computations, the bubble is consider to be a void, while in
present casey /p, = 1605 andu, /i, = 22.

and 1.34 for density ratios of 0.1, 0.01, and 0.001, respectively. The drag coefficientrepo
in [12] for varying density ratios under the corresponding Reynolds and Weber numb
is 1.29.

To further illustrate the effect of density ratio on the computational performance, Fig.
compares the convergence histories between two cases with different density ratios.

22
e 2r T
©
r 18}
B ————e 250 x 75
2 16 500 x 150
<
[+}]
2 14
E
@ 1.2
1 L L L L J
0 1 2 3 4 5

Time

FIG. 14. Comparison of the aspect ratio for the rising bubble Ra= 100, We=4, p,/0 =0.001, and
./ = 1.0 on the 250« 75 grid and the 50& 150 grid.
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p,/ p,=0.001
......................... p,/p =0.01
————— p,/p =01

FIG. 15. The steady shapes for cases wRe= 100, We=4, Fr=1, p,/p =0.1, 0.01, 0.001, and
o/ =1

residues of both the Young—Laplace equation, Eq. (8), and the Poisson pressure equ:
at a given time step, are shown. The residues are based on the sum of the absolute
of the residue computed in each cell. The levels shown in Fig. 17 are not normalized.
figure demonstrates that the present method is robust in terms of handling the large proj
variations across the phase boundary.

The favorable overall agreement in drag coefficients between the two simulations sh
that our method is capable of correctly predicting the dynamic behavior of a coupled sys
involving the liquid flow field and vapor bubble.

The computed bubble shapes for selected cases in Table | are shown in Fig. 18.
shapes are the ones when the unsteady bubble motion reaches the terminal velocity.

p,/p=0.001 p/p=0.01 p./p=0.1

co00U
co00U
0000

FIG. 16. The shape evolution for cases wite= 100 We=4, Fr=1, andu,/n, =1 at equal time intervals.
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FIG. 17. Convergence paths of the Young-Laplace equation at the interface and the pressure equation i
entire domain within a time step. Here two different density ratio cases are showRe#thl 00, We= 4, and

o/ =1.

Overall, the trend of bubble shapes changing with incred#aslin agreement with com-
mon experimental observation: spherical to oblate-ellipsoidal and then to oblate-ellipsoi
spherical cap [5].

Figure 19 shows the development of bubble shapes foR€} 5, We = 10, density
ratio = 1605 and viscosity ratie= 22, and (bRe= 2, We= 16, density ratic= 1605, and
viscosity ratio= 22. The corresponding streamlines for the two cases, plotted based
the coordinate fixed at the middle of the lower surface of the moving bubble, are sho
in Fig. 20. Two recirculating structures are observed in each case, one inside the but
and the other caused by the interaction between the bubble and the surrounding liqui
is interesting to observe that witke= 2 andWe= 16, the recirculating flow in the liquid
phase is, as expected, attached to the bubble, whilRéet 5 andWe = 10, it tends to
detach from the bubble.

2| O O - - -
51 O O D

10l O - > D

20| O O D D e N
sol (O D) —

| O O

FIG. 18. Computed terminal, axisymmetric shapes of rising bubbles as a funct®essfdWewith o, /p, =
1605 andu, /., = 22.
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FIG.19. Development of bubble shapes: 9= 2, We= 16, p /p, =1605 andu,/u, =22, and (bRe=
5, We=10, p/p, =16058 andu, /1, =22.

Figure 21 shows the flow structures corresponding to three density ratios, each \
Re=100,We= 4, and viscosity ratie= 1.0. This figure corresponds to the same parametel
as those shown in Figs. 15 and 16. In all cases, the recirculating wake is detached fron
bubble. Again, there is no significant difference for different density ratios.

4.2. Phase Change

The bubble dynamics with phase change is presented next.

The heat-transfer-controlled bubble growth due to evaporation in a superheated lic
under either zero gravity or normal gravity conditions, is simulated. The typical therme
physical property ratios of liquid and vapor states of water are specified in the simulat
of growth. The density ratio of two phases is thus about 1600.

u

FIG.20. Flow structure for cases corresponding to Fig. 19R@ 2, We= 16,0,/ p, = 1605, andly, /., = 22,
and (b)Re=5, We=10, p,/p, = 1605, andu,/u, =22. The streamlines are observed on the reference fram
attached to the moving bubble.
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FIG. 21. Flow structure for cases witRe=100, We=4, Fr=1, u,/uw =1, andp,/0 =0.1 (top), 0.01
(middle), 0.001 (bottom). The streamlines are observed on the reference frame attached to the mo
bubble.

Under the zero-gravity condition, the bubble growth phenomenon resembles the ic
case of a stationary bubble studied in many early papers such as [24], [63], and [51]
those studies, the bubble is assumed to maintain a spherical shape; thus a 1-D pro
with the bubble radius as the dependent variable is solved in conjunction with a therr
boundary layer approximation. The momentum effect in the liquid and vapor phases on
bubble growth and shape is totally discarded. In doing so, the bubble growth rate (i.e.,
radial velocity) depends only on the Jakob number. In the Appendi, itis shown by a sim
analysis that the diffusion-controlled steady bubble growth rate is proportiotdf ta\ll
those studies also concluded that the time evolution of the growth bubble radius follow
t%/2 law.

For the heat-transfer-controlled stationary bubble growth, the major mechanism is f
conduction, and the appropriate scaling for the velocity is based on the diffusion mechani
U = oy /L, whereq, is the liquid thermal diffusivity and. is the initial bubble diameter,
which is set to 0.5 mm in our calculations. Using the diffusion scale for velocity, the Pec
number is always 1.0.

A simple and effective way to test the current method for stationary bubble phase cha
problems is to calculate the bubble growth rate and compare it witttthiaw. In Fig. 22,
we plotted the calculated time-dependent growth rate of a stationary ethanol bubble
der atmospheric conditions. The thermal properties of ethanol used in the calcula
are py = 757.0 kg/n?, p, = 1.435 kg/n¥, o = 0.0177 N/m, 1 = 963 kJ/kg, andTsy =
35145 K, whichresults in the following values of the corresponding paramétees: 0.12,
We=391x 1077, Ja=0.1, Pr=8.37,Pe= 1.0, p/p, = 527, /i, = 41, andl' =
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FIG. 22. The dimensionless growth radius for a stationary bubble obtained in the present simulation ver
time forRe=0.12,We=3.91 x 107, Ja=0.1,Pr=8.37,Pe= 1.0, o, /p, =527, andu, /i, = 41.

2.8 x 107“. It is clear from Fig. 22 that the stationary bubble growth rate follows tfe
law exactly after an initial development period.

Under the terrestrial condition, a vapor bubble will be rising and growing simultaneou:
in a superheated liquid pool. As expected, the growth rate would be enhanced owin
the effects of convection from bubble motion. Based on their analysis, Darby [13] a
Ruckenstein and Davis [57] predict that the bubble growth rates are significantly higl
when there is relative motion between the bubble and its surrounding fluid. Based
the heat and mass correlation of Ranz and Marshall [54], we have found that the ste
growth rate of a translating spherical bubble, where convection overwhelms conductiot
proportional tat?/ as opposed tt/? for a conduction-dominated bubble. The detail of the
analysis, which does not include the bubble shape change and moving boundary effec
given in the Appendix.

For the rising and growing bubble case, an appropriate scale for the velagityis/gL,
whereg s gravity andL is the initial bubble diameter. Using this scale, the Froude number
always 1.0. To test the current method for a translating bubble undergoing phase change
cases were computed based on the thermal properties of water and ethanol, respect
The dimensionless parameters for the two cases are summarized in the following.
simulations were conducted in a time-dependent manner and stopped when the the
boundary layer around the bubble became fully developed. The dimensionless times w
the two cases were stopped were not the same.

The first case we simulated is based on the thermal properties of water under atmospl
conditions. However, for convenience, the Prandtl number is kept as 1.0. The Reyn
number is 10. The Peclet number is 10 because of the value of the Prandtl number.
Weber number is chosen as 0.2, which allows for a slight deformation. The Jakob nun
is 1.0. With the thermal property values of wajgr= 9583 kg/n?, p, = 0.597 kg/n¥,

o = 0.0589 N/m = 22567 kJ/kg, andlsg = 37315 K, other dimensionless parameters
arep| /p, = 1605, /i, = 22, andl’ = 3.05 x 1075,

The calculated time-dependent bubble growth rate for water is shown in Fig. 23a.
resultindicates that the steady bubble growth rate falls between the diffusion-controlled c
t¥2andthe convection-controlled ca$€. The reason is that the Reynolds number for wate
isonly 10 where the convection is relatively mild and does not dominate the diffusion. For
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FIG. 23. Growth rate of the bubble radius for a rising bubble obtained in the present simulation fi
cases (a)Re=10.0, Fr=1.0, We=0.2, Ja=1.0, Pr=1.0, Pe=10.0, p/p, =1605, andy,/u, =22, and
(b) Re=175,Fr =1.0, We=0.42,Ja=16.43,Pr=8.37,Pe= 14637, p,/ p, =527, andw, /i, = 41.

next case, we consider the ethanol bubble with a strong convection effect. In this simulat
a superheat oAT = 10°C is considered. The bubble departure diameter is about 1.0 m
according to empirical correlations [10], which is our initial bubble diameter and therel
the length scald_. The velocity scale is thus, = /gL = 9.9 x 102 m/s. With these
reference scales, the dimensionless parameters for this case are listed as Ratewls’5,
Fr=1.0,We= 0.42,Ja= 16.43,Pr = 8.37,Pe= 14637, o/ p, = 527,11/, = 41, and
=85x 107",

The calculated time-dependent growth rate of the translating ethanol bubble is plot
in Fig. 23b. Since the Reynolds number for this case is 175, convection is certainly
dominant mechanism. It is clear that the growth rate approaché$ttaw after the initial
development period. The slight deviation from tR€ law appears due to heat conduction,
bubble shape change, and moving boundary effects.

The corresponding temperature profiles around the bubble for these two cases are st
in Fig. 24. The thermal boundary layer is formed where the boundary layer is thinner arot
the upper surface and thicker around the lower surface of the rising bubble owing to
relative motion between the rising bubble and the surrounding liquid. It is also clear tl
the higher the Reynolds number is, the thinner the thermal boundary layer becomes.
tail-shaped structure in the wake results from the separation of the boundary layer.

Figure 25 shows the development of bubble shapes, under the influence of phase ch
and bubble motion, at selected time instants for three cases. In theseRadaf®s, and
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FIG. 24. The temperature profile at the end of the simulations for caseéR€#)10.0, Fr = 1.0, We=0.2,
Ja=1.0,Pr=1.0,Pe=100, p/p, = 1605, andu, /., = 22, and (b)Re=175,Fr = 1.0, We=0.42, Ja=16.43,
Pr=28.37,Pe= 14637, p/p, =527, andu, /u, = 41.

viscosity ratio are all fixed, while the density ratio is varied from 0.1 to 0.001. It i
noted that the density ratio directly influencisand the interface speed, as indicated in
Eqg. (9). Between the density ratios of 0.1 and 0.01, while the bubble size grows faster wi
smaller vapor density, the shapes are similar between the two cases. However, as the di

p./p, =0.001 p./p, =0.01 p./p,=0.1

D000
DO0U

FIG. 25. Development of phase change shapeffes= 100, We=4, Fr = 1, andu,/u = 1 with different
density ratios.
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FIG. 26. Flow structure for cases witRe= 100 We=4, Fr=1, u,/i, =1, andp,/p =0.1 (bottom),
0.01 (middle), 0.001 (top). The streamlines are observed on the reference frame attached to the moving buk

ratio is reduced to 0.001, which is closer to a normal boiling heat transfer case, signific
differences in the bubble growth rate and interface shape are observed. Figure 26 show
flow structures at the final stage of each case.

5. CONCLUSIONS

In the present work, a fixed-grid direct numerical simulation method has been develo
for studying single bubble deformation and phase change. The mass, momentum,
energy balance conditions are satisfied at the interface, and the interface is considert
be sharp. The field equations are solved numerically using a finite volume method ba
on the fractional step method. The geometric representations of the location and curva
of the interface are handled by t& B-spline with fairing. It has been demonstrated that
the present algorithm is capable of accurately handling wide rangeg ®fe Ja, Pe and
property jumps between phase boundaries. For the nonevaporating case, the drag coeffit
for a bubble rising and deforming under buoyancy force are in good agreement with th
reported in Ryskin and Leal [58]. For a stationary bubble growing in a superheated liqu
the growth rate approachd(t) o« t¥/2. The effect of bubble motion causes the growth
rate to accelerate. Accounting for both buoyancy and phase change effects, the density
becomes animportant parameter as the vapor density drops below a certain level. Withir
parameter combinations investigated in the present study, the density effect is not signifi
if there is no phase change.
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In summary, the present method has offered a new capability for simulating multiph:
fluid dynamics involving phase change, interface movement, curvature variations, and pi
erty jumps.

APPENDIX

Limits of Heat-Transfer-Controlled Spherical Bubble Growth

For a spherical bubble undergoing heat-transfer-controlled growth, the overall ene
balance for the evaporation at the bubble surface can be expressed as

df4 _, . 2
i@ {3”R (t)} A0, = hAT 4T R (1), (34)

whereR(t) is the instantaneous bubble radiugs the latent healy, is the vapor density,
h is the heat transfer coefficient, and’ is the degree of superheat.

To estimateh, we can use Ranz and Marshall's correlation [54], which considers bo
the conduction and convection effects,

Nu = 2 + 0.6RePr3

1
R 2
_ 2+o.6<ur ) Pr}
v

hR
=—, 35
» (35)
where the constant 2, the first term on the right-hand side, represents the contribution f
pure conduction and the second tern®fe 2 Pr3, denotes the contribution by convection.
From Eg. (35), we have

R) ? K
h= 2+o.6<Ur ) Pri| —. (36)
v R
Conduction-Dominated Growth
If only the first term of Eq. (36) is substituted for Eq. (34) becomes
dR k
AT R*——\p, = 2— AT4n R?. 37
TR pATAr (37)
Integration of Eq. (37) yields
R(t) = Ctz, (38)

whereC includes all parameters that are not functions of time such as thermal propert
the Prandtl number, and degree of superheat, etc.

Equation (38) indicates that the conduction-dominated growth rate is proportional to
square root of time.
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Convection-Dominated Growth

With only the second term of Eq. (36) substitutedipEq. (34) then becomes

1
47 Rz?j—?)»pv =06 (”r R) i Pr%%AT47t R?. (39)
V

Integration of Eq. (37) gives
R(t) = Ct3. (40)

From (40), the convection-dominated growth rate is proportional to the two-thirds pow
of time.
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